
A New Approach to Flexible, Trainingless Sketching

Florian Brieler, Mark Minas
Universität der Bundeswehr München, Germany

Department of Computer Science
{Florian.Brieler|Mark.Minas}@unibw.de

Abstract

Traditional diagram editors require the user to select the
different available shapes from a list before placing them
on the drawing area. In contrast, sketching allows the user
to really draw diagrams like with pen and paper. The ac-
tual shapes are later recognized by software. This means an
increased flexibility and simplicity in graphical user inter-
faces.

We present a new approach towards sketching. Goal is to
have a powerful recognition engine that does not imply any
restrictions on the user, and which is not bound to a specific
drawing style or training. Although we design our approach
to be quite flexible, our special interest lies in visual editors
with diagram analysis and interpretation. As these are able
to check the syntax and provide semantics of a diagram, the
recognized diagram can be compared against these to see if
the recognition is correct and meaningful.

1. Introduction

Consider a meeting of several designers that coopera-
tively create, edit and, to some extent, execute diagrams,
e.g., when modeling during the early stages of the de-
sign process. There exist powerful applications and envi-
ronments that greatly support the designers in drawing the
diagrams, checking for correct syntax and semantics, and
managing projects containing different diagrams. However,
the user interfaces of such programs mostly impose an ar-
tificial usage. Drawing a simple arrow, for example, when
modeling the flow of data in a diagram, usually requires the
user to select the arrow shape from a list of available shapes,
and place it on the drawing area by pointing at its start point
and its end point. While this procedure has been adopted
by most users, it is actually not very intuitive. Instead, sim-
ply drawing an arrow directly on the canvas, using a point-
ing device like a mouse or a stylus, and having the computer
find out that it is an arrow, is a much more natural way. This
way, the designers are freed from handling an application

with a complicated interface, and can focus on the actual
design. Unfortunately, these sketch-based approaches often
come with some drawbacks, as the user has to train the sys-
tem prior to using it, or requires a special drawing style. On
the contrary, the goal of sketch-based approaches is to sup-
port the designers in their creative work; restrictions are just
hindering. Our approach tackles this problem by providing
a fully-fledged drawing application which supports sketch-
ing, but does not impose any restrictions on the user.

The benefits of sketching go beyond creating a diagram.
It is even more helpful when it comes to editing. For ex-
ample, instead of removing a whole arrow and replacing it
by another one with a different representation and meaning,
e.g., an aggregation in UML class diagrams, sketching al-
lows erasing only the arrowhead and simply drawing a new
one with the respective meaning.

Although other fields of application are conceivable, the
driving idea behind our approach is to use the recognized in-
formation as input for DiaGen, a system for developing di-
agram editors [11]. By the use of our application, these edi-
tors are no longer restricted to traditional computer drawing
as described above, but can rely on the sketching approach
presented here. Additionally, DiaGen allows its editors to
perform diagram analysis; the information gathered during
this step may be used to improve the recognition process, as
incorrectly recognized components can be identified.

The results being presented in this paper are still pre-
liminary. Currently we assume a monochrome drawing;
the background is white, drawn lines and points that form
the components are black. Curved arcs, text, and filled or
hatched regions are not considered by now, as the focus
barely lies on recognition of sketches. The full recognition
process looks as follows (its details are explained in the fol-
lowing sections):

1. The visual language designer defines all components
of a diagram type. This has to be done only one time
and in advance.

2. The user draws a new diagram or edits an existing one.
3. The bitmap image is parsed to create a graph as an in-

ternal representation of the diagram.

4. The internal representation is reworked to compensate
for the impreciseness introduced by hand drawing.

5. The actual recognition of the components takes place,
based on the graph representation of the sketch.

6. The recognized components are passed to DiaGen,
which performs the diagram analysis.

Section 2 describes the design goals we have in mind for
our approach, apart from the field of application outlined in
this section. Section 3 classifies the above mentioned impre-
ciseness of hand drawn sketches. The classification is nec-
essary to identify and repair these deficiencies in the inter-
nal representation. Section 4 explains how the input bitmap
is transformed into this representation (cf. step 3). Compen-
sation for impreciseness is described in section 5 (cf. step
4). Finally, definition and recognition of the components in
the internal model is focus of section 6 (cf. steps 1 and 5).
Passing the found components to DiaGen has not yet been
considered (cf. step 6). Related work is presented in sec-
tion 7, along with a comparison to our approach. Section 8
gives prospect to further research we will do, and a conclu-
sion of this paper.

2. Design Goals

We state ease of use as one goal of our approach, which
is, to a certain degree, intrinsic to the application domain.
Considering a stylus, or even a mouse (although the for-
mer is much better suited for drawing diagrams), there is
no need for a complex usage. This also includes the per-
sonal drawing style of a user. If the user needs one or ten
strokes to draw a rectangle, starts at the upper-left corner, or
at the lower right, intersects the sides of the rectangle, draws
rounded corners, or draws the different strokes in any order;
all of these examples are just a matter of personal style and
must not influence the recognized result. The only common
knowledge the system shares with the user is the type of
diagram, which implies the available diagram components
(rectangles, arrows, etc.). As mentioned in section 1, the in-
tention is to have the user simply draw on the canvas. The
actual user interface has only to go as far as to offer activi-
ties that cannot be done with traditional pen and paper, e.g.,
saving and loading diagrams, or starting the analysis.

According to the intended setting of collaborative de-
sign, we abdicate training, because it is quite hindering.
Training means that the user has to draw each available
component several times prior to using the system for the
actual task of drawing diagrams. This is not only time-
consuming, but sometimes comes with another severe draw-
back; components have to be drawn the same way each
time. For example, if a user drew a rectangle during the
training phase always in a single stroke, starting at the up-
per left corner, he has do it exactly the same way each time

when he later wants to draw a rectangle. Consider a hand-
ful of designers that sit around a display that supports input
via a stylus. If the system has to be trained prior to using it,
who should train it? If all of the designers had to do it, this
would certainly contradict the idea of training, which is to
recognize components more precisely as the system get ac-
customed to a single drawer; besides, it would mean a lot
of overhead. On the other hand, if only one of the design-
ers trains the system, he is the only one who can possibly
use it, because the others probably draw a little bit different.
Either their drawings are not correctly recognized, or they
are recognized, which abandons the need for training. Fur-
thermore, we are convinced that it is possible to build a sys-
tem that exhibits high recognition rates even without train-
ing.

Additionally, as DiaGen is not limited to a special kind
of diagram1, generality in terms of which diagram compo-
nents can be recognized is another goal. Although systems
designed for a special field of application may lead to bet-
ter results, as they can assume more properties, we do not
want to limit our approach that way

Inbound to hand drawing is impreciseness. Of course,
the recognition process must be reliable, and lead to mean-
ingful results even in case of sloppy drawn diagrams. Nev-
ertheless, resolution of this impreciseness is inherent to the
recognition of hand drawn diagrams; therefore, we do not
have to explicitly state it as a goal. Instead, we want to put
emphasis on the resolution process itself. According to the
generality of design, it must be capable of reliably recogniz-
ing different components from different types of diagrams.

3. Classification of Drawing Deficiencies

Typical for hand drawn images are deficiencies. Lines
are rarely straight, corners are rarely exact, and so on. Deal-
ing with these deficiencies is one of the main tasks of a
sketching system. For example, although the sketch in Fig-
ure 1 is quite imprecise, the user certainly expects the rec-
tangle to be correctly recognized. To ease addressing this
issue, a classification of the possible deficiencies of hand
drawings has to be applied.

Deficiencies are classified into minor and major defi-
ciencies. The difference is how a deficiency is dealt with.
Minor ones are corrected by appropriate algorithms. The ac-
tual deficiency cannot be seen in the result any more. On
the contrary, major deficiencies are not removed, but an im-
provement to the deficiency is constructed and kept in par-
allel to the original. Background of this distinction is that a
major deficiency is either a real impreciseness in the draw-
ing, or intended by the user. The sketching program can de-
cide this question not until the actual recognition process

1 DiaGen builds editors based on diagram language specifications

Figure 1. A quickly drawn rectangle, which
shows some typical deficiencies.

(cf. section 6), as it depends on the components that are
available in the respective type of diagram. A minor defi-
ciency is always regarded as an impreciseness. Therefore,
removing it is considered harmless.

3.1. Minor Deficiencies

A minor deficiency is a line that is not perfectly straight.
Hand drawn lines are imprecise, and most of them are ac-
tually curved or corrugated. Another impreciseness is intro-
duced by two or more lines that are actually meant as a sin-
gle straight line, but which are not drawn in a single stroke,
but in several ones. At the splices, the resulting line is not
exact and can even have small corners or steps.

Additionally, small gaps in lines and at corners are con-
sidered as minor deficiencies, although one can argue that
small is a relative term. Consequently, we define a thresh-
old value tnei. Gaps smaller than the threshold are regarded
as small, while gaps wider are not.

3.2. Major Deficiencies

Because a gap can be an impreciseness no matter how
wide it is, gaps that are not small (see above) are consid-
ered as a major deficiency. Of course, there is also an up-
per limit for non-small gaps to still be a deficiency; it is the
threshold tspa. Gaps wider than this value are never thought
of as an impreciseness, but as the intention of the user.

The next major deficiency are “chopped corners”, which
can be seen at the upper right and the lower left corners in
Figure 1. When quickly drawing a rectangle, for instance,
many users tend to make rounded corners that look a little
bit like somebody chopped off the corner.

4. From the Bitmap to an Internal Represen-
tation

Before starting to recognize the diagram components,
the drawing has to be transformed into an internal represen-
tation that is suitable for the recognition process. For this
purpose attributed undirected graphs are employed. Graphs

Figure 2. A simple diagram and its final rep-
resentation as a graph.

are data structures that consist of a set of vertices, and a set
of edges connecting these vertices. See [14] for a formal in-
troduction to graphs.

We do not use edges that connect a vertex to itself. Ad-
ditionally, we allow at most one edge between each two
vertices. Attributed means that each vertex and edge can
have several attributes assigned. The two most important at-
tributes are coordinates x and y, which are assigned to ver-
tices. The idea of transforming the raw image information
into the graph now is to represent straight lines in the im-
age by edges in the graph. Hence, vertices mark the end
points of lines. See Figure 2 for a sketch (top) and the
graph (bottom) which is to be returned by the transforma-
tion process. In figures, vertices are depicted as filled cir-
cles, while edges are the lines connecting these circles. Al-
though the term “edge” refers to the graph, and “line” refers
to the sketch, we use both terms interchangeably. The same
is true for “vertex” and “point”.

In the following we assume some terms and definitions:

• Vertices are often denoted by v or vi, edges by e or ej ;
since its vertices unequivocally identify an edge, often
edges are denoted by their vertices, e.g., (v1, v2). If not
stated otherwise, different identifiers always mean dif-
ferent vertices and edges.

• If a vertex v lies on an edge e = (v1, v2) (which can
be determined by looking at the coordinates of the ver-
tices), this is denoted as v ∈ e.

• The neighborhood of a vertex v, neighbours(v), is the
set of all vertices v that are directly connected to v.

• The direction of an edge e, dir(e), is defined as the an-
gle between the edge and a horizontal line. ∀e : 0 ≤
dir(e) < 180 holds true in every case. The direction
of an edge is to used in comparison with the direction
of other edges, e.g., if they are parallel, or orthogonal.

• The distance between two vertices v1 and v2,
dist(v1, v2), is defined as the Euclidean distance be-

tween v1 and v2; it is always equal to the length of an
edge e = (v1, v2), len(e).

• The spatial neighborhood of a vertex v, spatial(v), is
the set of all vertices w where w ∈ spatial(v) ⇔
(dist(v, w) ≤ tspa ∧ w /∈ neighbours(v)). tspa is
a threshold value.

We consider two possible alternatives to obtain the graph
from a drawing. We could use the events generated by the
input device, i.e., a list of coordinates where a button was
pressed, or when the stylus touched the surface of the dis-
play. From these coordinates the edges could be directly
created. However, there are some difficulties in this ap-
proach which we have not solved yet. One is the question
when two edges can be connected. Another is what hap-
pens when the user moves the input device quite slow, thus
generating a large set of coordinates that lie very close to
each other. Therefore, we do not use the events to obtain the
graph.

Instead, we rely on the bitmap representation of the
drawing, which is scanned for drawn pixels (this process is
also called vectorization). The idea is to look for drawn pix-
els. If such a pixel is found, a small area around the pixel is
inspected for other drawn pixels. If there are some, the pix-
els are taken as vertices and are connected by an edge. In
the end, this leads to a relatively large number of very short
edges. In later steps, these short edges are merged and edited
in different ways to obtain the desired representation of the
graph (cf. Figure 2).

In detail, if a drawn pixel v is found, its neighborhood
is inspected for other drawn pixels vi. If such pixels are
found, new edges (v, vi)∀i are added to the graph. In con-
trast to the neighborhood of a vertex, the neighborhood of
a pixel p consists of all other pixels whose Euclidean dis-
tance to p is not greater than tnei. Obviously, the smaller
tnei is, the more edges are created, and the “finer” the graph
will be. After a pixel is dealt with that way, the next pixel is
inspected.

While this approach works fine, there have to be made
several additions to obtain the desired result:

• If a new edge (v1, v2) is to be added to the graph, it
is checked whether there is already another vertex o
in the graph where dist(v1, o) < tnei. If so, v1 is re-
placed by o. For v2, the same rules apply accordingly.
This leads to two different improvements. On the one
hand, it reduces the number of vertices and edges in
the graph, which accelerates later steps of processing.
One the other hand, it impedes edges whose length is
less than tnei.

• The size of the graph can be further reduced. Con-
sider a horizontal line in the image whose length is
6 · tnei, for example. The algorithm described above
leads to six edges that make up the line, each edge

Figure 3. A line and its interim representation
as a graph.

having a length of tnei (see Figure 3). Hence, a mech-
anism is required that removes these six short edges
and replaces them by one long edge. Let e1 and e2

be two connected edges, e1 = (a, b) and e2 = (b, c).
If |dir(e1) − dir(e2)| < tdir holds true, e1 and e2

are replaced by a new edge (a, c). This process is re-
peated for all edges in the graph, including newly cre-
ated edges like (a, c) from the example. In the end,
only the desired graph remains.

In fact, the threshold tdir is measured in degree. A value
of 20 turned out to lead to good results. The reason for hav-
ing a threshold at all is that hand drawn lines are never per-
fectly straight, but always a little bit corrugated and impre-
cise. As mentioned above, edges whose length is below tnei

are never added to the graph. Now the reason for doing so
becomes obvious. The shorter an edge is, the more coarse-
grained its direction is, due to the fact that discrete pixels
are used. For example, an extreme case is an edge whose
length is 2. Its only possible directions are (in degree) 0,
45, 90, and 135. If tdir is 20, the only possible case for two
edges to have similar directions according to tdir is for both
edges to have exactly the same direction. This renders tdir

useless and, much worse, requires the user to draw perfect
lines. A value of 5 turned out to be suitable for tnei, which
prevents the stated problem.

There is another problem not tackled by now. An often
seen result from the algorithm described above is that cor-
ners are not real corners, but are chopped off in the graph
(see Figure 4). The actual graph should appear similar to
Figure 2, where the corners are clearly more precise.

Let e1, e2 and e3 be three connected edges2, e1 = (a, b),
e2 = (b, c), and e3 = (c, d). e1 and e3 are intersected,
which leads to a new vertex i (the intersection is possible
if the two edges are taken as lines). Then, the three edges
e1, e2, e3 are removed, and (a, i) and (i, d) are added to the
graph. In case that i cannot be calculated, e.g., because e1

and e3 are parallel, nothing happens. Additionally, e2 has to
be a short edge, whose length is below a threshold tc, and
e1 and e3 have to be longer than tc. This assures that inci-

2 The current algorithm detects exactly three edges in most cases as
depicted in Figure 4. More than three edges are detected extremely
rarely.

Figure 4. Some lines and their interim repre-
sentation as a graph; the graphs exhibits im-
precise corners.

dentally chopped drawn corners are not removed, but only
those ones that are incorrectly identified by the algorithm.
tc is set to 1.5 · tnei for this purpose. This mechanism also
helps in case of a line starting in the middle of another line
(see Figure 4).

The sum of all the steps presented above leads to the de-
sired graph, which now is a good approximation of the ac-
tual drawing. The use of thresholds allows setting up the
system to obtain best results. Minor deficiencies, as identi-
fied in section 3.1, are eliminated.

5. Dealing with Major Deficiencies

The mechanisms established in the previous section al-
low recognizing straight lines from hand drawn lines, and
assure a proper graph based on the drawing. But this is not
sufficient. Before turning to the actual recognition process,
the major deficiencies of a hand drawing have to be com-
pensated for. This requires to close gaps and deal with
rounded edges, respectively edges that are not closed (cf.
section 3.2). The former problem can be quite easily solved.
Let (a, b) and (c, d) be two edges, |dir(a, b)− dir(c, d)| ≤
tdir and c ∈ spatial(b). If the missing edge (b, c) satis-
fies |dir(a, b) − dir(b, c)| ≤ tdir, (b, c) is added to the
graph. However, the decision whether the gap is deliber-
ate, or a drawing deficiency has to be deferred until com-
ponent recognition. Hence, the new edge is flagged by set-
ting its original attribute to false while it is set to true for all
other edges. The recognition process, therefore, can distin-
guish those newly created edges from the original ones.

The other type of major deficiencies, the problem of cor-
ners (cf. section 3.2), can also be easily solved, as the spa-
tial neighborhood can be employed again. The mechanism
applied is similar to the mechanism presented in section 4,
which deals with incorrect edges at corners. Again, let e1 =
(a, b) and e2 = (c, d) be two edges where c ∈ spatial(b).
Let i be the vertex that is created by intersecting e1 and e2.
Unlike before, some special cases have to be investigated. If
i ∈ e1 holds true, e1 is divided into (a, i) and (i, b), and fur-
thermore i is connected to the vertex of e2 that is closer to

(a) sketch

(b) identified graph (c) desired solution

Figure 5. Vertex a does not know of the ver-
tical edge; this exacerbates finding vertex c,
which is added later.

i. On the other hand, if i ∈ e2, the same rules apply accord-
ingly. If i /∈ e1 ∪ e2, i is connected to the particular vertices
of e1 and e2 which are closer to i.

Nevertheless, there is a more severe problem with inter-
sections, as the spatial neighborhood is not sufficient to de-
tect all occurrences of this class of drawing deficiencies.
Figure 5 gives an example of a problematic case (5(a)).

The vertical edge has no vertex in the spatial neighbor-
hood of vertex a, as c is not known by now (5(b)). Any-
way, a new edge (a, c) has to be added to the graph, which
extends (a, b), satisfies dir(a, b) = dir(a, c) and has c ly-
ing on the vertical edge, thus intersecting the edge (5(c)).
As before, the new edge (a, c) has its ’original’ attribute set
to false.

The problem is to detect such an occurrence and find an
appropriate vertex c. Edges are only defined by their ver-
tices and not by any points in between. Hence, the system
cannot simply recognize vertex a being near the edge (near
means that len(a, c) ≤ tspa). A naive way to detect the
proximity of the vertex and the edge would be to intersect
all edges with (a, b); obviously, this is not bearable in terms
of computational expenses, as it exhibits a complexity of
O(n2) in time for the whole graph, where n is the num-
ber of edges in the graph. To solve this problem, the num-
ber of edges that are intersected with (a, b) must be reduced.
[10] gives an algorithm based on the sweep line paradigm
that solves this problem in O((n+ s) · log n) in time, where
s is the number of actual intersections.

(a) rectangle (b) arrow

Figure 6. Two diagram components and their
abstract vertex identifiers.

6. Component Recognition

As the previous two sections have shown how the raw
bitmap image is converted into the internal data structure,
and all drawing deficiencies are cleared, the actual recog-
nition of the components of the diagram can be performed
now. This requires defining information about the compo-
nents in a suitable way, which is described in the next sec-
tion.

6.1. Defining Components

A component is a graph (to distinguish between vertices
in the graph of the sketch and components, we denote the
latter by numbers). Constraints can be used to further spec-
ify the visual appearance of a component. So far, only con-
straints for angles and lengths are provided.

When specifying an edge, the user can additionally de-
fine the relation of the points to each other. Possible values
are the eight 45 degree directions (up, up left, left, ...). This
could be also specified by constraints, but searching can be
performed more quickly if not using constraints for this pur-
pose (see section 6.2).

For the recognition process, each component needs a
designated start pointing. Furthermore, a linear ordering is
imposed on the vertices, which implies a searching plan.

A simple example of a component is a rectangle, as it
does not need any constraints. As a rectangle has four sides,
we have to define four lines for the component (Figure 6(a)):
line(1, 2, right), line(1, 3, down), line(3, 4, right), and
line(2, 4, down). As starting point we select 1. Another
example is an arrow, as depicted in Figure 6(b). The ar-
row has three lines; as we want the arrow to lie arbitrar-
ily rotated on the canvas, we define the lines without giv-
ing a direction: line(1, 2), line(1, 3), and line(1, 4). How-
ever, this is not sufficient for the arrow; we need some
constraints as well. The angles between lines (3, 1) and
(1, 2), and (2, 1) and (1, 4) both should be, say, 40 degrees:
angle(3, 1, 2) = 40, and angle(2, 1, 4) = 40. Addition-
ally, we want the lines (3, 1) and (1, 4) to be of a length
of 20 pixels, and the shaft of the arrow (2, 1) of a length

Figure 7. The graph of a user’s sketch.

greater than 50: length(3, 1) = 20, length(1, 4) = 20, and
length(2, 1) ≥ 50. The starting point again is 1.

6.2. Recognizing Components

Due to the preparatory work done so far, recognizing
components becomes a matter of generalized graph match-
ing. Occurrences of graph expansions of the component de-
finition graphs are searched in the graph that results from
parsing the sketch, because a single edge in the component
may be represented by several edges in the graph, e.g., when
different components are touching each other. Goal of the
algorithm is to find a mapping between the abstract identi-
fiers of a component and actual vertices in the graph.

To demonstrate the mechanism, we give a simple exam-
ple. Figure 7 gives the graph of a user’s sketch. The goal
is to find the rectangle defined in the previous section. We
start by mapping vertex a to identifier 1. The first line de-
fined for the rectangle says line(1, 2, right). Luckily, there
is vertex f which lies to the right of a, so f is mapped to
identifier 2. The next line says line(1, 3, down). Below ver-
tex a, there are two candidates, b and d. We try b first and
map it to identifier 3. The third line of the rectangle def-
inition says line(3, 4, right), and since vertex c lies to the
right of b, it is mapped to identifier 4. However, the last line,
line(2, 4, down), cannot be found as 2 has been mapped to
f and 4 to c, but neither lies f above c nor are the two of
them connected. In the course of backtracking, we discard
the mapping of 4 and, as there are no alternatives to ver-
tex c, the mapping of 3. Instead, vertex d is mapped to 3
and e to 4. line(2, 4, down) can be found now, because e
and f are connected and f lies above e. The mapping is
complete, all lines are found, and there are no constraints to
check. The rectangle has been recognized.

Now the same procedure would be applied for all other
vertices in the graph mapped to the starting point of the rec-
tangle component, but, obviously, without success. In case
of constraints, they can be checked after the component is
recognized. Since all identifiers are mapped to concrete ver-
tices that have coordinates, angles and lengths can be eas-
ily checked then. If all constraints are fulfilled, fine. If not

(a) clearly drawn

(b) ugly drawn

Figure 8. Examples of sketches.

so, the component is not returned as recognized, but sim-
ply discarded.

6.3. Assessing an Instance

As stated in the introduction, the recognition is done with
respect to visual editors. For example, if a UML class sym-
bol is recognized, but the diagram analysis reveals that it is
syntactically wrong, the recognition process must be able to
recognize a different component as well, if possible, e.g., a
UML package symbol. This is done automatically by the al-
gorithm presented in the previous section. However, recog-
nizing all possible components raises the question of which
to try first, if some if the components overlap. While we
have not solved this issue yet, as a first step we introduce
a measure q for the quality of a recognized component. q
is calculated after all constraints have been checked. q is
initialized with 1, which corresponds to a component that
is perfectly drawn, and is multiplied by a factor p where
0 < p < 1 each time the sketch is imprecise, e.g., when ver-
tices are traversed that have their ’original’ attribute set to
false.

The idea is to try components with higher q value first as
drawings with better quality are less likely misinterpreted
by the recognition process.

6.4. Implementation

A prototype implementation of our approach is able to
recognize most components correctly, when the user is anx-
ious to draw clearly. Figure 8(a) shows some components
that are identified correctly.

However, as stated as one of the goals of this project, the
user should not be bound to a peculiar clear drawing style.
It is rather the task of the recognition process to identify

the components correctly, even if these are drawn sloppy.
The ideas stated in section 5 are not fully implemented by
now, so their impact cannot be analyzed yet. Without these,
sleazy drawn components like in Figure 8(b) are not recog-
nized.

7. Related Work

This section shows some fields of application for sketch-
ing and some approaches similar to the one presented in this
paper.

Most other approaches rely on strokes, which we do not.
Satin [6] is a representative of stroke-based systems, devel-
oped at UC, Berkeley. It is an extensive, high-level frame-
work for creating pen-based applications. From the strokes
drawn, Satin is able to recognize either graphical objects
or gestures, depending on the pressed button on the point-
ing device. An interesting application built on top of Satin
is Denim [8], an editor that supports designers in the early
stages of web site creation. It fully supports the pen-based
paradigm, and exposes a novel approach in user interfaces,
where sketching is only one of several aspects. Costagli-
ola et al. [5] also present an approach towards stroke based
sketch recognition, which is also based on Satin. It is addi-
tionally capable of diagram analysis. Quite similar to what
we plan to do, their application, called SketchBench, al-
lows the user to design a full visual language, including
the graphical symbols, and syntax and semantics check-
ers whereas they employ a different recognition technique
which is based on grammars.

Some other approaches are restricted to certain applica-
tion domains. Stahovich et al. developed a program called
SketchIT [13]. It allows for abstraction of the qualitative be-
havior of a mechanical device, which is delivered by the
user as a sketch. Quite similar to SketchIt as for analyzing
mechanical diagrams, Kurtoglu and Stahovich presented a
program able to translate hand-drawn sketches into respec-
tive diagrams [7]. The user draws symbol for symbol, one
after another. After finishing drawing a symbol, the user
presses a button to initiate recognizing that symbol. After all
symbols are drawn, the program creates the diagram, and re-
solves all ambiguities that arose from symbols whose mean-
ing is not self-contained. For actual recognition, the pro-
gram depends on a generic approach that uses several tech-
niques to recognize symbols from strokes, too [2]. A sketch
based electronic whiteboard is described by Chen et al. [3],
but it is restricted to UML diagrams, which are recognized,
and then passed over to a conventional CASE tool. Text is
supported by using Rubine’s algorithm for recognition of
gestures [12].

Penguins [4], developed by Sitt Sen Chok at Monash
University, also aims at the same direction as we do, espe-
cially with respect to diagram analysis. However, the pro-

posed editor also supports traditional drawing mechanisms
which we want to avoid. Free hand sketch recognition is
also based on strokes.

Alvarado and Davis show another interesting stroke
based approach using Bayesian networks to represent hy-
potheses about the user’s sketch, thus finally solving ambi-
guities in the recognition process [1]. Their approach is not
restricted to specific domains. It allows recognizing sym-
bols as these are drawn, and compensates for drawing
deficiencies.

Akin to our proposal, Mahoney and Fromherz present an
approach that relies on graphs which are created from the
drawing [9]. Before starting the recognition process, several
mechanisms are applied to compensate for the imprecise-
ness of a hand drawn sketch. Specifying the visual compo-
nents by recognizing sketches is also considered; this would
free the user from the burden of specifying the components
textually, but introduces difficulties in terms of ambiguity.

8. Conclusions and Future Work

In this paper we have presented our first ideas of a
flexible and general approach towards recognition of hand
drawn sketches. While the results seen so far are promising,
a lot of work is still to be done. First, efficiency will be im-
proved by processing sketches as sets of line segments that
are induced by the event sequence from mouse or stylus in-
stead of processing a bitmap image. As stated in section 6.4,
the recognition process has to be improved for imprecisely
drawn components. We have to investigate the impact of the
mechanisms from section 5. Furthermore, we are investigat-
ing how our approach can be extended by arc and text recog-
nition. Finally, the linking with DiaGen is missing. Cur-
rently, the components recognized are simply printed on the
screen, instead of being processed any further.

References

[1] C. Alvarado and R. Davis. Dynamically constructed bayes
nets for multi-domain sketch understanding. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence, 2005.

[2] C. Calhoun, T. Stahovich, T. Kurtoglu, and L. Kara. Recog-
nizing multi-stroke symbols. In AAAI Technical Report SS-
02-08, pages 78–85, 2002.

[3] Q. Chen, J. Grundy, and J. Hosking. An e-whiteborad ap-
plication to support early design-stage sketching of uml di-
agrams. In Symposium on Human-Centric Computing Lan-
guages and Environments, Auckland, New Zealand, October
2003.

[4] S. S. Chok. Automatic Construction of User Interfaces for
Pen-based Computers. PhD thesis, Monash University, Vic-
toria, Australia, 1998.

[5] G. Costagliola, V. Deufemia, G. Polese, and M. Risi. A
parsing technique for sketch recognition systems. In Sym-
posium on Visual Languages/Human-Centric Computing,
Rome, Italy, September 2004.

[6] J. Hong and J. Landay. Satin: A toolkit for informal ink-
based applications. In The ACM Symposium on User Inter-
faces and Software Technology, CHI Letters, 2 (2), pages 63–
72, 2000.

[7] T. Kurtoglu and T. Stahovich. Interpreting schematic
sketches using physical reasoning. In AAAI Spring Sympo-
sium on Sketch Understanding, AAAI Technical Report SS-
02-08, pages 78–85, 2002.

[8] J. Lin, M. Newman, J. Hong, and J. Landay. Denim: An in-
formal tool for early stage web site design. In Extended Ab-
stracts of Human Factors in Computing Systems: CHI 2001,
2001.

[9] J. V. Mahoney and M. P. Fromherz. Three main concerns
in sketch recognition and an approach to addressing them.
In AAAI Spring Symposium on Sketch Understanding, Stan-
ford, CA, March 2002.

[10] K. Mehlhorn. Multi-dimensional Searching and Computa-
tional Geometry. Springer-Verlag, Berlin, 1984.

[11] M. Minas. Concepts and realization of a diagram editor gen-
erator based on hypergraph transformation. Science of Com-
puter Programming, 44(2):157–180, 2002.

[12] D. H. Rubine. The automatic recognition of gestures. PhD
thesis, Carnegie Mellon University, 1991.

[13] T. F. Stahovich, R. Davis, and H. E. Shrobe. Generating mul-
tiple new designs from a sketch. In AAAI-96, Vol. 2, pages
1022–1029, 1996.

[14] M. N. S. Swamy and K. Thulasiraman. Graphs, Networks,
and Algorithms. John Wiley & Sons, New York, 1981.

